129 research outputs found

    Software Model Checking with Explicit Scheduler and Symbolic Threads

    Full text link
    In many practical application domains, the software is organized into a set of threads, whose activation is exclusive and controlled by a cooperative scheduling policy: threads execute, without any interruption, until they either terminate or yield the control explicitly to the scheduler. The formal verification of such software poses significant challenges. On the one side, each thread may have infinite state space, and might call for abstraction. On the other side, the scheduling policy is often important for correctness, and an approach based on abstracting the scheduler may result in loss of precision and false positives. Unfortunately, the translation of the problem into a purely sequential software model checking problem turns out to be highly inefficient for the available technologies. We propose a software model checking technique that exploits the intrinsic structure of these programs. Each thread is translated into a separate sequential program and explored symbolically with lazy abstraction, while the overall verification is orchestrated by the direct execution of the scheduler. The approach is optimized by filtering the exploration of the scheduler with the integration of partial-order reduction. The technique, called ESST (Explicit Scheduler, Symbolic Threads) has been implemented and experimentally evaluated on a significant set of benchmarks. The results demonstrate that ESST technique is way more effective than software model checking applied to the sequentialized programs, and that partial-order reduction can lead to further performance improvements.Comment: 40 pages, 10 figures, accepted for publication in journal of logical methods in computer scienc

    The term processor generator Kimwitu

    Full text link

    Using Bounded Model Checking to Focus Fixpoint Iterations

    Get PDF
    Two classical sources of imprecision in static analysis by abstract interpretation are widening and merge operations. Merge operations can be done away by distinguishing paths, as in trace partitioning, at the expense of enumerating an exponential number of paths. In this article, we describe how to avoid such systematic exploration by focusing on a single path at a time, designated by SMT-solving. Our method combines well with acceleration techniques, thus doing away with widenings as well in some cases. We illustrate it over the well-known domain of convex polyhedra

    Forward Slicing by Conjunctive Partial Deduction and Argument Filtering

    Full text link
    Program slicing is a well-known methodology that aims at identifying the program statements that (potentially) affect the values computed at some point of interest. Within imperative programming, this technique has been successfully applied to debugging, specialization, merging, reuse, maintenance, etc. Due to its declarative nature, adapting the slicing notions and techniques to a logic programming setting is not an easy task. In this work, we define the first, semantics-preserving, forward slicing technique for logic programs. Our approach relies on the application of a conjunctive partial deduction algorithm for a precise propagation of information between calls. We do not distinguish between static and dynamic slicing since partial deduction can naturally deal with both static and dynamic data. Furthermore, this approach can quite easily be implemented by adding a new code generator on top of existing partial deduction systems. A slicing tool has been implemented in ECCE, where a post-processing transformation to remove redundant arguments has been added. Experiments conducted on a wide variety of programs are encouraging and demonstrate the usefulness of our approach, both as a classical slicing method and as a technique for code size reduction

    INC: a language for incremental computations

    No full text

    Incremental computation with names

    No full text
    corecore